Pular para o conteúdo principal

Progressão Aritmética


Professor de Matemática no Colégio Estadual Dinah Gonçalves
E Biologia na rede privada de Salvador-Bahia
Professor Antonio Carlos carneiro Barroso
Extraído de http://www.alunosonline.com.br
Definição: uma Progressão Aritmética (ou P.A.) é uma sequência numérica em que a diferença entre qualquer termo (a partir do 2º) e o termo anterior é sempre a mesma (constante). A essa constante dá-se o nome de razão da P.A., e é representada por r.

A sequência (0, 2, 4, 6, 8, 10, ...) é um exemplo de P.A. Vejamos:

2 – 0 = 2; 4 – 2 = 2; 6 – 4 = 2; 8 – 6 = 2;

Observe que a diferença entre qualquer termo e o anterior a ele é sempre 2. Portanto, a sequência é uma P.A. de razão r = 2.

Outros exemplos:

a) (5, 10, 15, 20, 25, 30, ... ) é uma P.A. de razão r = 5
b) (20, 17, 14, 11, 8, ...) é uma P.A. de razão r = – 3
c) (7, 7, 7, 7, ...) é uma P.A. de razão r = 0

As Progressões Aritméticas são classificadas de acordo com o sinal da razão.

r > 0 → P.A. crescente
r < 0 → P.A. decrescente
r = 0 → P.A. constante

Agora vamos imaginar que o problema seja determinar o 100º termo de uma P.A., conhecendo o 1º termo e a razão da mesma. Intuitivamente a ideia seria adicionar a razão ao primeiro termo para obter o segundo e assim sucessivamente até encontrar o 100º termo. Esse processo é muito trabalhoso. No entanto, há uma fórmula que nos permite obter qualquer termo de uma P.A., conhecendo apenas o 1º termo e a razão. É a fórmula do termo geral da P.A.

Termo geral da P.A.

Seja a1 o primeiro termo de uma P.A. e r a sua razão. Temos que:

a2 – a1 = r → a2 = a1 + r
a3 – a2 = r → a3 = a2 + r → a3 = a1 + 2r
a4 – a3 = r → a4 = a3 + r → a4 = a1 + 3r
a5 – a4 = r → a5 = a4 + r → a5 = a1 + 4r

Generalizando, obtemos:
an = a1 + (n - 1)∙r, que é a fórmula do termo geral da P.A.

Exemplo 1. Determine o 100º termo de uma P.A. de razão 3 sabendo que o primeiro termo é 2.

Solução: temos que

a1 = 2; r = 3; a100 = ?

Utilizando a fórmula do termo geral, obtemos:

a100 = 2 + (100 - 1)∙3
a100 = 2 + 99∙3
a100 = 2 + 297 = 299

Portanto, o 100º termo da P.A. é 299.

Exemplo 2. Calcule o 50º termo da P.A. ( -3, -7, -11, -15, ...)

Solução: temos que

a1 = -3; r = a2 – a1 = -7 – (-3) = -7 + 3 = -4; a50 = ?

Utilizando a fórmula do termo geral da P.A., obtemos:

a50 = -3 + (50 - 1)∙(-4)
a50 = -3 + 49∙(-4)
a50 = -3 - 196 = -199
Exemplo 3. Qual é o 33º múltiplo de 7?

Solução: sabemos que o 1º múltiplo de qualquer número é zero. Assim, os primeiros termos dessa P.A. são (0, 7, 14, 21, ...).

Dessa forma, temos que

a1 = 0; r = 7; a33 = ?

Pela fórmula do termo geral, obtemos:

a33 = 0 + (33 - 1)∙7
a33 = 0 + 32∙7 = 224

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de