Pular para o conteúdo principal

Progressão aritmetica

Progressão aritmética é um tipo de seqüência numérica que a partir do segundo elemento cada termo (elemento) é a soma do seu antecessor por uma constante.

(5,7,9,11,13,15,17) essa seqüência é uma Progressão aritmética, pois os seus elementos são formados pela soma do seu antecessor com a constante 2.
a1 = 5
a2 = 5 + 2 = 7
a3 = 7 + 2 = 9
a4 = 9 + 2 = 11
a5 = 11 + 2 = 13
a6 = 13 + 2 = 15
a7 = 15 + 2 = 17

Essa constante é chamada de razão e representada por r. Dependendo do valor de r a progressão aritmética pode ser crescente, constante ou decrescente.

P.A crescente: r > 0, então os elementos estarão em ordem crescente.

P.A constate: r = 0, então os elementos serão todos iguais.

P.A decrescente: r < 0, então os elementos estarão em ordem decrescente.

Termo Geral de uma P.A

Considere uma P.A finita qualquer (a1, a2, a3, a4, ... , an) de razão igual a r, sabemos que:

a2 – a1 = r → a2 = a1 + r
a3 – a2 = r → a3 – a1 – r = r → a3 = a1 + 2r
a4 – a3 = r → a4 – a1 – 2r = r → a4 = a1 + 3r


a n = a1 + (n – 1) . r

Portanto o termo geral de uma P.A é calculado utilizando a seguinte fórmula:

a n = a1 + (n – 1) . r

Exemplo 1:
Calcule o 16º termo de uma P.A, sabendo que a1 = -10 e r = 3.

an = a1 + (n – 1) . r
a16 = -10 + (16 – 1) . 3
a16 = -10 + 15 . 3
a16 = -10 + 45
a16 = 35

O 16º termo de uma P.A é 35.

Soma dos termos de uma P.A finita

Se tivermos uma P.A finita qualquer, para somarmos os seus termos (elementos) chegaremos à seguinte fórmula para somarmos os n elementos de uma P.A finita.

Sn = (a1 + an) . n
2

Exemplo 2:

Determine uma P.A sabendo que a soma de seus 8 primeiros termos é 324 e que
a 8 = 79.

Retirando os dados:
n = 8
Sn = 324
a 8 = 79

Sn = (a1 + an) . n
2

324 = (a1 + 79) . 8
2

324 . 2 = 8 a1 + 79 . 8
648 = 8 a1 + 632
16 = 8 a1
a1 = 2

Precisamos encontrar o valor de r (razão) para encontrar o valor dos outros elementos.

a n = a1 + (n – 1) . r
79 = 2 + (8 – 1) . r
79 = 2 + 7 . r
79 – 2 = 7r
77 = r
7
r = 11
www.mundoeducacao.com.br

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de