articulador 1

sexta-feira, 30 de janeiro de 2015

m m c

Produtos notáveis

Equação de 1º grau

Equação de 1º grau

Numeros racionais

probabilidades

ângulos

quarta-feira, 28 de janeiro de 2015

MESTRADO POFISSIONAL EM FISICA UFPE‏

Amanda Barbosa da Silva 
Licenciada em Matemática 
Mestra em Educação Matemática e Tecnológica 

IX SESEMAT


 
IX SESEMAT

Convidamos todos para o IX Seminário Sul-Mato-Grossense de Pesquisa em Educação Matemática.

O Seminário Sul Mato-Grossense de Pesquisa em Educação Matemática (SESEMAT) é um evento realizado pelo Programa de Pós-Graduação em Educação Matemática da UFMS (PPGEduMat). As edições dos últimos anos vêm permitindo a consolidação de um importante espaço para a socialização de pesquisas e debates pertinentes ao campo da Educação Matemática.
O IX SESEMAT será realizado entre os dias 11 a 13 de Março de 2015 em Campo Grande (MS). Os pesquisadores interessados em submeter trabalhos devem proceder sua inscrição na página: http://sesemat.wix.com/ixsesemat até o dia 31 de Janeiro de 2015. Além de trabalhos realizados em instituições do Estado de Mato Grosso Sul, a submissão de trabalhos é aberta a pesquisadores de qualquer parte do país. A seleção dos trabalhos aprovados para apresentação no IX SESEMAT será realizada por uma Comissão Científica de abrangência nacional, contribuindo para valorizar o espaço de atuação de participantes do evento. Nesse sentido, venha participar desse significativo encontro acadêmico a fim de partilhar e enriquecer conhecimentos e experiências em Educação Matemática.
Serão aceitos trabalhos na modalidade de Pôster e Comunicação Científica.
O Evento contará ainda com a presença de ilustres convidados de projeção nacional e internacional que proferirão as conferências de abertura, encerramento e mesas redondas.
Para maiores informações acessem o site do evento <http://sesemat.wix.com/ixsesemat> ou o nosso perfil no Facebook.

Comissão Organizadora.

segunda-feira, 26 de janeiro de 2015

MMC e MDC

Os cálculos envolvendo MMC e MDC são relacionados com múltiplos e divisores de um número natural. Entendemos por Múltiplo, o produto gerado pela multiplicação entre dois números. Observe:
Dizemos que 30 é múltiplo de 5, pois 5 * 6 = 30. Existe um número natural que multiplicado por 5 resulta em 30. Veja mais alguns números e seus múltiplos:
M(3) = 0, 3, 6, 9, 12, 15, 18, 21, ...
M(4) = 0, 4, 8, 12, 16, 20, 24, 28, 32, ...
M(10) = 0, 10, 20, 30, 40, 50, 60, ...
M(8) = 0, 8, 16, 24, 32, 40, 48, 56, ...
M(20) = 0, 20, 40, 60, 80, 100, 120, ...
M(11) = 0, 11, 22, 33, 44, 55, 66, 77, 88, 99, ...

Os múltiplos de um número formam um conjunto infinito de elementos.

Divisores
Um número é considerado divisível por outro quando o resto da divisão entre eles é igual a zero. Observe alguns números e seus divisores:
D(10) = 1, 2, 5, 10.
D(20) = 1, 2, 4, 5, 10, 20.
D(25) = 1, 5, 25.
D(100) = 1, 2, 4, 5, 10, 20, 25, 50, 100.


Mínimo Múltiplo Comum (MMC)
O mínimo múltiplo comum entre dois números é representado pelo menor valor comum pertencente aos múltiplos dos números. Observe o MMC entre os números 20 e 30:
M(20) = 0, 20, 40, 60, 80, 100, 120, ....
M(30) = 0, 30, 60, 90, 120, 150, 180, ...

O MMC entre 20 e 30 é equivalente a 60.
Outra forma de determinar o MMC entre 20 e 30 é através da fatoração, em que devemos escolher os fatores comuns de maior expoente e os termos não comuns. Observe:
20 = 2 * 2 * 5 = * 5
30 = 2 * 3 * 5 = 2 * 3 * 5
MMC (20; 30) = 2² * 3 * 5 = 60

A terceira opção consiste em realizar a decomposição simultânea dos números, multiplicando os fatores obtidos. Observe:




Máximo Divisor Comum (MDC)

O máximo divisor comum entre dois números é representado pelo maior valor comum pertencente aos divisores dos números. Observe o MDC entre os números 20 e 30:
D(20) = 1, 2, 4, 5, 10, 20.
D(30) = 1, 2, 3, 5, 6, 10, 15, 30.

O maior divisor comum dos números 20 e 30 é 10.

Podemos também determinar o MDC entre dois números através da fatoração, em que escolheremos os fatores comuns de menor expoente. Observe o MDC de 20 e 30 utilizando esse método.
20 = 2 * 2 * 5 = 2² * 5
30 = 2 * 3 * 5 = 2 * 3 * 5
MDC (20; 30) = 2 * 5 = 10

Exemplo
Vamos determinar o MMC e o MDC entre os números 80 e 120.
MMC
80 = 2 * 2 * 2 * 2 * 5 = 24 * 5
120 = 2 * 2 * 2 * 3 * 5 = 2³ * 3 * 5
MMC (80; 120) = 24 * 3 * 5 = 240
MDC (80; 120) = 2³ * 5 = 40

  Marcos Noé

Cálculo de IMC


O Índice de Massa Corporal (IMC) é uma medida do grau de obesidade uma pessoa. Através do cálculo de IMC é possível saber se alguém está acima ou abaixo dos parâmetros ideais de peso para sua estatura.

Como Calcular IMC

Calcular IMC requer a aplicação de uma fórmula que leva em conta seu peso e altura. Se você quer informações mais detalhadas sobre o cálculo, consulte nossa página sobre o cálculo do IMC.

Calcular IMC

Utilize o formulário abaixo para fazer o cálculo de IMC:
Seu peso:Kg
Sua altura:m
Com o resultado do cálculo de IMC, consulte abaixo a tabela da Associação Brasileira para o Estudo da Obesidade para saber como está seu índice:

Tabela IMC

Cálculo IMCSituação
Abaixo de 18,5Você está abaixo do peso ideal
Entre 18,5 e 24,9Parabéns — você está em seu peso normal!
Entre 25,0 e 29,9Você está acima de seu peso (sobrepeso)
Entre 30,0 e 34,9Obesidade grau I
Entre 35,0 e 39,9Obesidade grau II
40,0 e acimaObesidade grau III

Tabuada

Videos de Biologia


OPERAÇÕES COM MONÔMIOS


O que são monômios ?
Um monômio é uma expressão algébrica racional inteira que representa um produto de números reais.
- Um monômio distinguimos em duas patês:
1) Um parte numérica (constante) que também é chamada de coeficiente .
2) Uma parte literal (variável)

TERMOS SEMELHANTES

Dois termos que têm parte literais iguais, ou que não têm parte literal, são denominados termos semelhantes.
São semelhantes , por exemplo:
1)      6ab e -2ab
2)      3x e 7x
3)      4abc e -2abc
4)      1/4x⁴ e 12x⁴

Observe que:
5x²y³ e 5x³y² não são semelhantes
-3x²y³ e 4y³x² são semelhante


Adição e subtração

Eliminam-se os parênteses e reduzem-se os termos semelhantes.

Exemplos 1

(+8x) + (-5x)
8x – 5x
3x

Exemplo 2

(-7x ) – ( +x)
-7x – x
-8x

Exemplo 3

(2/3x) – (-1/2x)
2/3x + 1/2x
4x/6 + 3x/6
7x/6


EXERCÍCIOS


1) Efetue:

a) (+7x) + (-3x) = (R: 4x)
b) (-8x) + (+11x) = (R: 3x )
c) (-2y) + (-3y) = (R: -5y)
d) (-2m) + (-m) = (R: -3m)
e) (+5a²) + (-3a²) = (R: 2a²)
f) (+5x) + (-5x) = (R: 0)
g) (+6x) + (-4x) = (R: 2x)
h) (-6n) + (+n) = (R: -4n)
i) (+8x) – ( -3x) = (R: 11x)
j) (-5x) – (-11x) = (R: 6x)
k) (-6y) – (-y) = (R: -5y)
l) (+7y) – (+7y) = (R: 0 )
m) (-3x) – (+4x) = (R -7x)
n) (-6x) – ( -x) = (R: -5x)
o) (+2y) – (+5y) = (R: -3y )
p) (-m) –(-m) = (R: 0 )

2) Efetue :

a) (+ 3xy) – (-xy) + (xy) = (R: 5xy)
b) (+ 15x) – (-3x) – (+7x) + (-2x) = (R: 9x )
c) (-9y) –( +3y) – (+y) + (-2y) = (R: -15y)
d) (3n) + (-8n) + (+4n) – (-5n) – (-n) = (R: 5n)

3) Efetue:

a) (+1/2x) + (-1/3x) = (R: 1x/6)
b) ( -2/5x) + (-2/3x) = (R: -16x/15)
c) (-7/2y) + (+1/4y) = (R: -13y/4)
d) (+2m) +( -3/4m) = (R: 5m/4)
e) (+2/3x) - ( -3/2x) = (R: 13x/6)
f) (-3/4y) – (+1/2y) = (R: -5y/4)
g) (+2/5m) – (+2/3m) = (-4m/15)
h) (-3x) –(-2/5x) = (R: 13x/5)

4)   Calcule os monômios

a)      2x + 3x = (R: 5x)
b)      6y – 4y + 5y = (R: 7y)
c)       3a – 6a – a = (R: -4a)
d)      2/5 x²y 3/2 x²y = (R: 19/10 x²y)
e)      1/2ab – 3ab = (R: 5/2ab)
f)       7b + 4b – 6b = (R: 5b)
g)      3/2 y – 2y + 7/3 y = (R: 11/6Y)
h)      3/5 x + x = (R: 8/5x)
i)        8xy – 4xy + 4xy – 8xy = (R: 0xy)
j)        3/7 x + 41/8 x = ( R: 311/56x)
k)      -x² + 2/5 x² = (R: -3/5 x²)
l)        -3p -7p + 18p = (R: 8p)


MULTIPLICAÇÃO


O produto de dois monômios, basta multiplicarmos coeficiente com coeficiente e parte literal com parte literal. E quanto multiplicamos as partes literais devemos usar a propriedade da potencia que diz para conservar a base e somar os expoentes.
Exemplo
Vamos Calcular:

(3x²) . (2x⁵) =
( 3 . x . x) . ( 2 .x.x.x.x.x.)=
3 .2 x.x.x.x.x.x.x =
6x⁷

Conclusão: multiplicam-se os coeficientes e as partes literais

Exemplos

a) (3x⁴) . (-5x³) = -15x⁷
b) (-4x) . (+3x) = -12x²
c) (-2y⁵) . (-7y ) = 14y⁶
d) (3x) . ( 2y) = 6xy


EXERCÍCIOS

1) Calcule:
a) (+5x) . (-4x²) = (R: -20x³)
b) (-2x) . (+3x) = (R: -6x²)
c) (+5x) . (+4x) = (R: 20x²)
d) (-n) . (+ 6n) = (R: -6n²)
e) (-6x²) . (+3x²) = (R: -18x³)
f) (-2y) . (5y) = (R: -10y²)
g) (+4x²) . (+5x³) = (R: 20x⁵)
h) (2y) . (-7x) = (R: -14yx)
i) (-2x) . (-3y) = (R: 6xy)
j) (+3x) . (-5y) = (R: -15xy)
k) (-3xy) . (-2x) = (R: 6x²y)

 
2) Calcule

a) (2xb) . (4x) = (R: 8x²b)
b) (-5x²) . (+5xy²) = ( R: -25 x³y²)
c) (-5) . (+15x²y) = (R: -75 x²y)
d) (-9X²Y) . (-5XY²) = (R: 45x³y³)
e) (+3X²Y) . (-XY) = ( R: -3x³y²)
f) (X²Y³) . (5X³Y²) = (R: 5x⁵y⁵)
g) (-3x) . (+2xy) . ( -x³) = (R: 6x⁵y)
h) (-x³) . (5yx²) . (2y³) = (R: -10x⁵y³)
i) (-xy) . (-xy) . (-xy) = (R: -x³y³)
j) (-xm) . ( x²m) . (3m) = (R: -3x³m³)

3) Calcule:
a) (1/2x) . (3/5x³) = (R: 3/10x⁴)
b) (-2/3x) . (+3/4y) = (R: -6/12xy ou -1/2xy)
c) (-1/3x²) . (4/3x³) = (R: -4/6x⁵ ou -2/3x⁵)
d) (-x²/3) . (-x/2) = (R: x³/6)
e) (-2x/3) . (6x/5) = (R: -12/15x²)
f) (-10xy) . ( xy²/3) =

DIVISÃO

A divisão de dois monômios, basta dividirmos o coeficiente com coeficiente e parte literal com parte literal. E quanto dividimos  as partes literais devemos usar a propriedade da potencia que diz para conservar a base e subtrair  os expoentes. 


Vamos calcula:

(15x⁶) : (5x²) =
15 . x . x . x. x. x. x : 3 . x . x
3 . x . x . x . x
3x⁴

Conclusão: dividem-se os coeficientes e as partes literais

Exemplos

a) (21x⁶) : (-7x⁴) = -3x²
b) (-10x³) : (-2x²) = +5x
c) (-15x³y) : ( -5xy) = +3x²

EXERCÍCIOS

1) Calcule os quocientes:

a) (15x⁶) : (3x²) = (R: 5x⁴)
b) (16x⁴) : (8x) = (R: 2 x³)
c) (-30x⁵) : (+3x³) = (R: -10)
d) (+8x⁶) : (-2x⁴) = (R: -4x²)
e) (-10y⁵) : (-2y) = (R: 5y⁴)
f) (-35x⁷) : ( +5x³) = (R: -7x⁴)
g) (+15x⁸) : (-3x²) = (R: -5x⁷)
h) (-8x) : (-8x ) = (R: 1)
i) (-14x³) : (+2x²) = (R: -7x)
j) (-10x³y) : (+5x²) = (R: -2xy)
k) (+6x²y) : (-2xy) = (R: -3x)
l) (-7abc) : (-ab) = (R: 7c)
m) (15x⁷) : ( 6x⁵) =
n) (20a³b²) : ( 15ab²) =
o) (+1/3x³) : (-1/5x²) =
p) (-4/5x⁵y) : ( -4/3x³y) =
q) (-2xy²) : ( xy/4) = (R: -8y)


2) Calcule


a)      (10xy) : (5x) = ( R: 2y)
b)      (x³y²) : (2xy) = (R: 1/2 x²y)
c)       (-3xz²) : (-3xz) = (R: z)
d)      (-14m⁶n³) : ( 7m⁴n²) = (R: -2m²n)
e)      (1/2a³b²) : (-a³b²) = (R: -1/2)
f)       (a⁴b³) : (5a³b) = (R: 1/5 ab²)
g)      (-3x⁵y³) : (-4x²y) = (R: 3/4x³y²)
h)      (-2/3 x⁴z⁴) : 5/3 z⁴ = (R: -2/5 x⁴)

POTENCIAÇÃO


Para elevarmos um monômio a uma potência devemos elevar cada fator desse monômio a essa potencia. Na pratica elevamos elevamos o coeficiente numérico à potencia e multiplicamos cada um dos epoentes das variáveis pelo expoente da potencia.


Vamos calcular:

(5a³m)² = 25 a⁶m

Conclusão : Para elevarmos um monômio a uma potência, elevamos cada um de seus fatores a essa potência.

Exemplos

1) (-7x)² = 49 x²
2) (-3x²y)³ = -27x⁶y³
3) (- 1/4x⁴)² = 1/16x⁸


EXERCÍCIOS

1) Calcule:

a) ( + 3x²)² =
b) (-8x⁴)² =
c) (2x⁵)³ =
d) (3y²)³ =
e) (-y²)⁴ =
f) (-mn)⁴ =
g) (2xy²)⁴ =
h) (-4x²b)² =
i) (-3y²)³ =
j) (-6m³)² =
k) (-3x³y⁴)⁴ =
l) (-2x²m³)³ =

2) Calcule:

a) (x²/2)³ =
b) (-x²/4)² =
c) (-1/2y)² =
d) (+2/3x)³ =
e) (-3/4m)² =
f) (-5/6m³)² =

RAIZ QUADRADA

Para extraimos a raiz de um monômio efetuamos a raiz de seu coeficiente numérico e a raiz de seus fatores. Na pratica isso equivale a dividirmos cada expoente pelo indice da raiz.


Aplicando a definição de raiz quadrada, temos:

a) √49x² = 7x, pois (7x)² = 49x²
b) √25x⁶ = 5x³, pois (5x³)² = 25x⁶

Conclusão: para extrair a raiz quadrada de um monômio, extraímos a raiz quadrada do coeficiente e dividimos o expoente de cada variável por 2

Exemplos:

a) √16x⁶ = 4x³
b) √64x⁴b² = 8x²b

Obs: Estamos admitindo que os resultados obtidos não assumam valores numéricos negativos

EXERCÍCIOS

1) Calcule

a) √4x⁶ =
b) √x²y⁴ =
c) √36c⁴ =
d) √81m² =
e) √25x¹² =
f) √49m¹⁰ =
g) √9xb² =
h) √9x²y² =
i) √16x⁸ =

2) Calcule:

a) √x²/49 =
b) √x²/25 =
c) √4/9x⁸ =
d) √49/64x¹⁰ =
e) √25/81yx⁶ =
f) √121/100 x²m⁸ =
jmpgeo.blogspot.com.br

co

assine o feed

Postagens

acompanhe

Comentários

comente também

Widget Códigos Blog modificado por Dicas Blogger