Pular para o conteúdo principal

Cálculo de autovalores e autovetores


Seja A a matriz da transformação T:V → V. A matriz A deve ser, portanto, uma matriz quadrada (n x n). Conforme já visto, para um autovalor λ e um autovetor v,

T(v) = λ v. De outra forma,

A v = λ v  #A.1#

Considerando I a matriz unitária (ou matriz identidade), pode-se escrever λ v = λ I v. Substituindo na anterior e reagrupando,

λ I v − A v = 0. De outra forma,

(λ I − A) v = 0  #B.1#

Seja a função:
f(λ) = det (λ I − A) #C.1#

Ela é denominada função característica da matriz A.

Para solução não nula de #B.1#, deve-se ter o determinante nulo:

det (λ I − A) = 0  #D.1#

Resolvendo a equação acima, obtém-se os valores de λ que, substituídos em #A.1#, permitem a determinação dos autovetores.


Exemplo: são dados:

• matriz 3x3 A, para a qual se deseja calcular os autovalores.

• λ I, que é o produto do escalar λ pela matriz unitária I 3x3.

Matrizes para autovalores

A matriz da diferença λ I − A é

Matriz da diferença

O seu determinante é calculado pelas relações a seguir.

det (λ I − A) = (λ − 2) [ (λ − 3) (λ + 2) − (1) (−4) ] − (−1) [ (−2) (λ + 2) − (1) (−4) ] + (−1) [ (−2) (1) − (1) (λ − 3) ].

det (λ I − A) = [ (λ − 2) (λ − 3) (λ + 2) + 4λ − 8 ] + [−2λ ] − [−λ − 1].

det (λ I − A) = (λ − 2) (λ − 3) (λ + 2) + 3 (λ − 3).

det (λ I − A) = (λ − 3) [ (λ − 2) (λ + 2) + 3 ].

det (λ I − A) = (λ − 3) [ λ2 − 4 + 3 ] = (λ − 3) [ λ2 − 1 ].

Expandindo o último termo e igualando a zero conforme #D.1#,

det (λ I − A) = (λ − 3) (λ + 1) (λ − 1) = 0.

As soluções dessa equação do terceiro grau são claramente:

λ =  1
λ = −1
λ =  3

Aplica-se agora a igualdade #A.1# para o valor de λ = 1.

Matrizes para cálculo de autovetores

Essa relação matricial pode ser transformada em um sistema de equações lineares através do desenvolvimento do produto das matrizes e posterior simplificação.

Equações lineares para autovalores

Somando a primeira com a terceira equação, v3 = 0. Substituindo nas demais, chega-se ao resultado

v1 + v2 = 0

Ou

v1 = − v2

Há infinitas soluções e pode-se dizer que o vetor é dado por v = α (1, −1, 0) onde α é um escalar não nulo qualquer. Portanto, para o autovalor λ = 1, os autovetores são da forma:

α (1, −1, 0) com α ≠ 0.

Procedimento idêntico pode ser usado para os demais valores de λ.
fonte:http://www.mspc.eng.br/mam

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de