Pular para o conteúdo principal

Propriedades de uma Função

As funções, independentes do grau que ela seja, são caracterizadas conforme a ligação entre os elementos dos conjuntos onde é feita a relação.

Uma função A →B pode ser: sobrejetora, injetora, e bijetora. Para identificarmos essas características em uma função é preciso que tenhamos o conhecimento da definição de função, do que é um domínio, imagem e contradomínio.

Observe o diagrama abaixo que representa uma função f: A→B e veja quem é o domínio, a imagem e o contradomínio dela.


Domínio serão todos os elementos do conjunto A: D(f) = {-3,1,2,3} a imagem será os elementos do conjunto B que receberem a seta: Im(f) = {1,4,9} e o contradomínio será todos os elementos do conjunto B: CD(f) = {1,4,5,9}.

Agora, veja como identificar essas características da função:

Função sobrejetora
Uma função será sobrejetora se o conjunto imagem for igual ao conjunto do contradomínio, ou seja, o conjunto imagem será todos os elementos do conjunto de chegada. Matematicamente, podemos dizer que: f: A →B definida por uma fórmula qualquer será sobrejetora se Im(f) = B.

Função injetora
Uma função será injetora se os elementos do conjunto do domínio estiverem ligados a imagens distintas. Matematicamente podemos dizer que: f: A → B definida por uma fórmula qualquer será injetora se todos os elementos de A forem distintos (diferentes) e as imagens desses elementos forem distintas também.


Função bijerora
Para que uma função assuma a característica de uma função bijetora ela tem que ser ao mesmo tempo sobrejetora e injetora. O conjunto imagem deverá ser igual ao conjunto do contradomínio e todos os elementos do domínio deverão estar ligados a imagens distintas.
Danielle de Miranda

Comentários

  1. Olá Multiplicador Antônio Carlos, estamos muito felizes por você fazer parte deste projeto.
    Como prometido, seu blog já foi divulgado. Fizemos de coração, esperamos que goste!

    Aqui está o link da publicação:

    http://www.educadoresmultiplicadores.com.br/2012/08/multiplicador-ensino-de-matematica.html

    Faça uma visitinha especial ao blog Educadores Multiplicadores, abra as páginas e veja como ficou sua divulgação.

    E já sabe, seu blog poderá ficar em evidência todos os meses, conforme as regras da parceria.

    Parabéns pelos excelentes textos, fique na Paz de Cristo Jesus, abraço e até breve!

    ResponderExcluir

Postar um comentário

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de