Pular para o conteúdo principal

Teoria dos conjuntos


Relação de pertinência
Cada aluno da classe tem uma mesma propriedade: estar na sala de aula. Assim, ao falarmos neste conjunto estabelecemos a possibilidade de averiguar se uma pessoa pertence ou não a ele. O conceito básico da teoria dos conjuntos é a relação de pertinência representada pelo símbolo Î. As letras minúsculas designam os elementos de um conjunto e as maiúsculas, os conjuntos. Assim, o conjunto das vogais (V) é: V = {a, e, i, o, u}
→ A relação de pertinência é expressa por: a Î V, pois o elemento a pertence ao conjunto V.
→ A relação de não-pertinência é expressa por: b Î V, pois o elemento b não pertence ao conjunto V.
Formação de um conjunto
Um conjunto pode ser definido de duas maneiras:
→ Enumerando todos os elementos do conjunto: S = {1, 3, 5, 7, 9}
→ Expressando uma ou mais propriedades que se verificam para todos os seus elementos e somente para eles:
S = {números ímpares de um algarismo} Podemos representá-lo assim:
B = {x Î S / x tem a propriedade P}; (lê-se: x pertence ao conjunto S tal que x possui a propriedade P).
O conjunto B é formado por todos os elementos de S que possuem a propriedade P.
Exemplo: B = {x Î IN / x < 8} = {0, 1, 2, 3, 4, 5, 6, 7}
Conjunto vazio: Ø ou { }
É aquele que não contém nenhum elemento.
Subconjuntos de um conjunto
Quando todos os elementos de um conjunto A pertencem também a outro conjunto B, dizemos que:
A é um subconjunto de B, ou então que ... A é uma parte de B, ou então que ... A está incluído em B e escrevemos A Î B.
Se existir pelo menos um elemento de A que não pertença a B, diremos então que A não está incluído em B e escreveremos A Ë B.
Conjunto das partes de um conjunto
Se tivermos um conjunto de elementos a que chamamos F, o conjunto das partes de F será aquele formado por todos os possíveis subconjuntos de F e será representado por P(F).
Se o conjunto F tem n elementos, então o conjunto das partes de F, P(F), terá 2n elementos.
Exemplo: Sendo F = {3, 5, 9}, vamos escrever todos os possíveis subconjuntos de F:
→ com nenhum elemento Ø
→ com 1 elemento {3}, {5}, {9}
→ com 2 elementos {3, 5}, {3, 9}, {5, 9}
→ com 3 elementos {3, 5, 9}
Podemos então escrever: P(F) = { Ø, {3}, {5}, {9}, {3, 5}, {3, 9}, {5, 9}, {3, 5, 9} }
O número de elementos de um conjunto F é denominado ordem do conjunto e é indicado por n(F).
Repare que no exemplo acima n(F) = 3 e n (P(F)) = 23 = 8
Relação de inclusão
A relação de inclusão possui 3 propriedades:
→ Propriedade reflexiva: A Î A, isto é, um conjunto sempre é subconjunto dele mesmo.
→ Propriedade anti-simétrica: se A Î B e B Î A, então A = B.
→ Propriedade transitiva: se A Î B e B Î C, então A Î C.
Conjunto complementar
Complementar de A com respeito a R e é representada por CRA = R - A.
No caso dos alunos de uma classe, o conjunto complementar do conjunto dos alunos presentes à aula será formado pelos alunos ausentes à aula.
União e intersecção de conjuntos
Dados dois conjuntos A e B, existe sempre um terceiro formado pelos elementos que pertencem a pelo menos um dos conjuntos a que chamamos conjunto união e representamos por: A U B.
Formalmente temos que: A U B = {x / x Î A ou x Î B}
A união de conjuntos obedece às seguintes propriedades:
→ Propriedade comutativa: A U B = B U A
→ Propriedade associativa: A U (B U C) = (A U B) U C
→ Elemento Neutro: A U Ø = A
Utilizando os diagramas de Venn (Figura abaixo), verificamos algumas das propriedades acima.
A intersecção dos conjuntos A e B é o conjunto formado pelos elementos que são ao mesmo tempo de A e de B, e é representada por: A ∩ B
Formalmente temos que: A ∩ B = {x| xÎA e xÎB}
A intersecção dos conjuntos A e B é o conjunto formado pelos elementos que são ao mesmo tempo de A e de B, e é representada por: A ∩ B
Formalmente temos que: A ∩ B = {x| xÎA e xÎB}
A intersecção de dois conjuntos obedece às seguintes propriedades:
→ Propriedade comutativa: A ∩ B = B ∩ A
→ Propriedade associativa: A ∩ (B∩C) = (A∩B) ∩ C
→ Propriedade de idempotência: A ∩ A = A
→ A ∩ Ø = Ø
Relacionando união e intersecção, surgem duas outras propriedades interessantes:
→ Propriedade distributiva da união com relação à intersecção: A U (B∩C) = (AUB) ∩ (AUC);
→ Propriedade distributiva da intersecção com relação à união: A ∩ (BUC) = (A∩B) U (A∩C).
Produto cartesiano
O produto cartesiano de dois conjuntos A e B, escrito A x B, é o conjunto formado por todos os pares ordenados (a, b), em que o primeiro elemento a pertence a A e o segundo elemento b pertence a B.
Simbolicamente, podemos escrever:
A X B = {(a, b)| a Î A, b Î B}
Se A = {1, 2} e B = {x, y, z}, então: A X B = {(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)}
O conjunto A x B tem 2 x 3 = 6 elementos.
Em geral, se A tem a elementos e B tem b elementos, A x B tem a x b elementos, isto é:
se n(A) = a e n(B) = b, temos que n(A x B) = a x b.
É importante salientar que os pares ordenados recebem estes nomes por se constituírem de 2 elementos em que é fundamental a ordem na qual se apresentam.
No exemplo, o par (1, x) pertence a A x B. Mas o mesmo não acontece com o par (x, 1), que pertenceria ao produto B x A.
É por isso que se afirma que o produto cartesiano não tem a propriedade comutativa. Ele pode ser representado de várias formas:
→ Com um diagrama de flechas.
→ Com um diagrama cartesiano.
→ Com um diagrama em árvore.
As propriedades do produto cartesiano são as seguintes:
→ Propriedade associativa: (A x B) x C = A x (B x C) = A x B x C
→ A x Ø = Ø
→ A x B = Ø se, e somente se, A = Ø ou B = Ø
→ Se C ≠ Ø e A x C = B x C, então: A = B
Os conjuntos numéricos
A expansão contínua do campo numérico chegou, no final do século XIX, de forma totalmente desordenada. Os matemáticos estruturaram, então, uma teoria de conjuntos numéricos que, de certa forma, seguiu a lógica do processo histórico de criação do número.
O conjunto dos números naturais IN
O mais simples. Por ser um conjunto discreto, pode ter uma representação explícita:
IN = {0, 1, 2, 3, 4, 5...}
O conjunto dos números inteiros Z
É o que resulta da expansão de IN na integração dos números negativos. Por ser um conjunto discreto, pode ter representação explícita: Z = {... ­-3, ­-2, ­-1, 0, 1, 2, 3,...}.
O conjunto dos números racionais Q
É a expansão do conjunto Z, na qual o campo numérico passa a ocupar a parte racional da continuidade.
Por não ocupá-la completamente, é considerado um conjunto denso, sem representação explícita. Pode existir na reta, desde que se indiquem os espaços vazios da descontinuidade, que correspondem aos números irracionais, também à esquerda de zero.
O conjunto dos números reais IR
É a expansão do conjunto Q na qual o campo numérico passa a ocupar toda a continuidade, graças à união dos campos racional e irracional. Por se tratar de um conjunto contínuo, não tem representação explícita. É um conjunto numérico que ocupa todos os pontos da reta, também à esquerda de zero.
fonte:matematiques.com.br

Comentários

  1. Olá boa tarde, fiquei com uma dúvida em como devo fazer esse exercício...pode me ajudar?



    Uma pesquisa feita entre leitores de três tipos de revistas em uma cidade contatou que:

    55 pessoas leem a revista A;

    55 pessoas leem a revista B;

    55 pessoas leem a revista C;

    15 pessoas leem as revistas A e B;

    20 pessoas leem as revistas C e B;

    25 pessoas leem as revistas A e C;

    5 pessoas leem as revistas A, B e C;

    Assinale a opção que representa o número de pessoas que participaram da pesquisa:



    a. 100
    b. 110
    c. 105
    d.95
    e. 90

    ResponderExcluir

Postar um comentário

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de