Pular para o conteúdo principal

Propriedades de uma função

Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com

 
F unção é uma relação entre dois ou mais conjuntos, a caracterização da função irá depender do tipo de relação estabelecida entre os conjuntos, ou seja, como será feita a ligação do conjunto de partida com o conjunto de chegada.

A função pode ser dividida em: função sobrejetora, função injetora e função bijetora.

Para a compreensão das características das funções é preciso saber algumas características das funções: domínio, imagem, contradomínio.

Domínio: são os elementos do conjunto de partida, ou seja, os valores correspondentes a x.
Contradomínio: são todos os elementos do conjunto de chegada, independentemente se receberam a seta ou não.
Imagem: são apenas os elementos do conjunto de chegada que receberam a seta dos elementos do conjunto de partida.

Exemplo:
Dado o conjunto A = {0,1,2,3,4} e o conjunto B = {0,1,2,3,4,5,6} a função A→B definida pela fórmula f(x) = x + 2, monte o seu diagrama e identifique quem é o domínio, a imagem e o contradomínio dessa função.

Como a função é A→B (de A para B) dizemos que o conjunto de partida é o A e o de chegada o B. Assim, os elementos do conjunto A serão os valores que o x irá assumir. Substituindo na fórmula f(x) = x + 2 ou y = x + 2, iremos encontrar o seguinte diagrama:



Assim, podemos dizer que os elementos que irão fazer parte do conjunto do domínio são: D = {0,1,2,3,4}.
Os elementos que irão fazer parte do conjunto imagem são: Im = {2,3,4,5,6}.
Os elementos que irão fazer parte do conjunto contradomínio são: CD = {0,1}.

Função sobrejetora

Uma função será considerada sobrejetora se o conjunto imagem for igual ao conjunto do contra domínio.

Função injetora

Uma função será considerada injetora se os diferentes elementos do conjunto do domínio possuir imagens diferentes.

Função bijetora

Uma função será bijetora se ela assumir as características de uma função sobrejetora e injetora ao mesmo tempo.
mundoeducacao

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de