Pular para o conteúdo principal

Produtos Notáveis

Professor de Matemática no Colégio Estadual Dinah Gonçalves
E Biologia na rede privada de Salvador-Bahia
Professor Antonio Carlos carneiro Barroso
email accbarroso@hotmail.com

Produtos Notáveis

Por Marcos Noé


Produtos notáveis
Alguns cálculos algébricos possuem uma forma padronizada de respostas e podem ser resolvidos através de situações generalizadas. Os produtos notáveis podem ser resolvidos aplicando algumas generalizações que serão expostas a seguir:

Quadrado da soma

Podemos expressar o quadrado da soma pela generalização (x+y)² ou (x+y)(x+y).
O cálculo (x+y)(x+y) pode ser resolvido aplicando a propriedade distributiva da multiplicação. Temos:

x*x + xy + yx + y*y = x² + 2xy + y²

Regra prática
“O quadrado do primeiro termo mais duas vezes o primeiro termo vezes o segundo, mais o quadrado do segundo termo”.


Quadrado da diferença

Generalizando temos (x-y)² ou (x-y)(x-y):

x*x – xy – yx + y*y = x² – 2xy + y²

Regra prática
“O quadrado do primeiro termo menos duas vezes o primeiro termo vezes o segundo, mais o quadrado do segundo termo”.


Produto da soma pela diferença

Generalizando temos (x+y)(x-y):

x*x – xy + yx – y*y = x² – y²

Regra prática
“Quadrado do primeiro termo menos o quadrado do segundo termo”.



Cubo da soma

Generalizando temos (x+y)³ ou (x+y)*(x+y)*(x+y):

(x² + xy + xy + y²) (x+y)
(x² + 2xy + y²) (x+y)
x³ + x²y + 2x²y + 2xy² + xy² + y³
x³ + 3x²y + 3xy² + y³


Regra prática

“O cubo do primeiro termo mais três vezes o quadrado do primeiro termo vezes o segundo termo, mais três vezes o primeiro termo vezes o quadrado do segundo termo, mais o cubo do segundo termo”.



Cubo da diferença

Generalizando temos (x–y)³ ou (x– y)*(x– y)*(x– y):

(x² – xy – xy + y²) (x–y)
(x² – 2xy + y²) (x–y)
x³ – x²y – 2x²y + 2xy² + xy² – y³
x³ – 3x²y + 3xy² – y³

“O cubo do primeiro termo menos três vezes o quadrado do primeiro termo vezes o segundo termo, mais três vezes o primeiro termo vezes o quadrado do segundo termo, menos o cubo do segundo termo”.

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de