Pular para o conteúdo principal

Paraná


Bandeira do Paraná
Significado da bandeira: as cores verde e branca representam, respectivamente, as matas e a paz. O círculo azul com estrelas brancas simboliza o céu do Paraná e a constelação do Cruzeiro do Sul; os ramos são uma referência à Mata de Araucárias e à erva-mate.
Localizado na Região Sul do Brasil, o estado do Paraná limita-se ao norte com São Paulo, a noroeste com Mato Grosso do Sul, ao sul com Santa Catarina, a oeste com o Paraguai e a sudoeste com a Argentina, além de ser banhado a leste pelo Oceano Atlântico.
Com predominância do clima subtropical, a vegetação paranaense é composta por Mata de Araucárias, Mata Atlântica, campos e mangues. O relevo é caracterizado por planaltos, depressões e baixada litorânea. Os rios que compõem a rede hidrográfica são o Iguaçu, Ivaí, Paraná, Paranapanema, Tibaji, entre outros.

Localização do Paraná no mapa do Brasil
O Paraná possui extensão territorial de 199.316,694 quilômetros quadrados e população total de 10.439.601 habitantes, conforme dados divulgados em 2010 pelo Instituto Brasileiro de Geografia e Estatística (IBGE). Esse contingente populacional está distribuído em 399 municípios; e a capital é a cidade de Curitiba.
Na economia, o estado se destaca pela grande produção de milho, soja, feijão, trigo e aveia. O setor industrial é impulsionado pela agroindústria, indústria automobilística, química, celulose, etc. O turismo e a mineração também são importantes fontes de receitas financeiras.
Com relação aos aspectos sociais, o Paraná, assim como os outros dois estados do Sul (Rio Grande do Sul e Santa Catarina), apresenta bons indicadores. A taxa de mortalidade infantil é de 17,9 para cada mil nascidos vivos, abaixo da média nacional, que é de 23,3. Um dos problemas registrados é o déficit no serviço de rede de esgoto: 27,2% das residências não têm acesso à rede de esgoto.
Confira nossos artigos disponibilizados nessa subseção e obtenha maiores informações a respeito dessa unidade federativa do Brasil.
alunosonline

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de