Pular para o conteúdo principal

Logaritmos

Professor de Matemática e Biologia Antônio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com


Logaritmo podem simbolizar potência de outra forma. Como 10 ao quadrado = 100, então log 100 = 2.
Eles são mais curtos que as potências.
Imagine que as potências indiquem a altura de um foguete que, depois de lançado, atinge 10 m em 1 segundo, 100 m em 2 segundo, e assim sucessivamente. O tempo é sempre o logaritmo da altitude.
Se o foguete está a 10.000 m acima do solo, a sua altura é 4. Portanto, o logaritmo de 10.000 é 4.

O que é logaritmo e onde utilizá-lo ?

A palavra logaritmo originou-se das palavra gregas Logos (razão) e arithmos (números).
No século XVII, havia dificuldades na elaboração de cálculos devido principalmente às operações de multiplicação, divisão e potenciação.
Burgi, em 1620, e John Napier, em 1614, publicaram as primeiras tabelas de logaritmos, cuja finalidade era a simplificação de cálculos numéricos complicados.
Embora as tabelas de logaritmos não seja tão usadas atualmente como instrumento de cálculo, os logaritmos são de grande importância em diversas áreas, por exemplo, na medição de terremotos.
Para compreendermos melhor o que é logaritmo, consideramos uma base positiva e diferente de 1.
Ex: 34 = 81
Ao expoente dessa potência damos o nome de logaritmo. Portanto, 4 é o logaritmo de 81 na base 3.
34 = 81 log 813 = 4
Dados dois números reais e positivos a e b, sendo 1, chama-se logaritmo b na base a o expoente que deve colocar à base a.
Indicamos : loga b = x a = b.
Onde b é o logaritmando
a é a base
x é o logaritmo


Condição de existência

CE b > 0
1 a > 0

SISTEMA DE LOGARITMO
Chama-se sistema de logaritmo de base a ( 1 > 0 ), o conjuntos dos logaritmos de todos os números reais positivos na base a.
Dois sistemas de logaritmos destacam-se pelo seu importante papel no campo das Ciências, são eles: sistema de logaritmos decimais (ou sistema de logaritmo de Briggs) e sistema de logaritmos neperianos (ou sistema de logaritmos naturais).

LOGARITMOS DECIMAIS
São aqueles na base 10. Indicaremos por log b = x, sem necessidade de colocar a base 10.

SISTEMA NEPERIANO OU NATURAL
É o conjunto dos logaritmos na base e (e é um número irracional que recebe o nome de número de Euler, que vale 2,71828...). Indicaremos In b = x.

CONSEQUÊNCIAS DA DEFINIÇÃO
A partir da definição, temos:a) loga 1 = 0
O logaritmo de 1 é sempre 0, pois a0 = 1.

b) loga a = 1
Quando a base é igual ao logaritmando, o logaritmo é sempre 1, pois a1 = a .
b) loga na = n
O logaritmo de potência da base é sempre o expoente dessa base pois an = an.
d) alog a b = b
Um número a, elevado ao logaritmo de b na base a, é sempre igual a b.

e) loga b = loga c b = c
Dois valores são iguais, então, seus logaritmos, na mesma base, também são iguais.


DOMÍNIO DE UMA FUNÇÃO LOGARÍTMICA

Chamamos a condições de existência de um logaritmo de campo de existência ou domínio dos logaritmos.
Exemplo:

a) Determinar o campo de existência da função f (x) = log2 (x-3 ) indica-se condição de existência por CE.

PROPRIEDADES OPERATÓRIAS DOS LOGARITMOS

• Logaritmo de um produto

• Logaritmo de um quociente

• Logaritmo de uma potência

• Logaritmo de uma raiz


EQUAÇÕES LOGARÍTMICAS

Podemos classificar as equações em redutíveis, que são solucionadas por meio da definição de logaritmo.

Para resolvermos um equação, devemos obter:
• Condição de existência.
• Verificação com as soluções da equação nas condições de existência.


MUDANÇAS DE BASE
As vezes, em algumas situações, devemos transformar o logaritmo em outra base. Para mudarmos a base de um logaritmo, utilizamos a seguinte fórmula:
Log b em que c será a nova base
Loga b = ______ condições: b > 0
Logc a 0 < a
1

Conseqüência:
a) loga b . logc a = logc b
b) loga b = 1
____
logb a
coladaweb.com

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de