Pular para o conteúdo principal

Limites

Noção intuitiva de limite
Seja a função f(x)=2x+1. Vamos dar valores a x que se aproximem de 1, pela sua direita (valores maiores que 1) e pela esquerda (valores menores que 1) e calcular o valor correspondente de y:
x y = 2x + 1
1,5 4
1,3 3,6
1,1 3,2
1,05 3,1
1,02 3,04
1,01 3,02
x
y = 2x + 1
0,5 2
0,7 2,4
0,9 2,8
0,95 2,9
0,98 2,96
0,99 2,98
Notamos que à medida que x se aproxima de 1, y se aproxima de 3, ou seja, quando x tende para 1 (x 1), y tende para 3 (y 3), ou seja:
Observamos que quando x tende para 1, y tende para 3 e o limite da função é 3.
Esse é o estudo do comportamento de f(x) quando x tende para 1 (x 1). Nem é preciso que x assuma o valor 1. Se f(x) tende para 3 (f(x) 3), dizemos que o limite de f(x) quando x 1 é 3, embora possam ocorrer casos em que para x = 1 o valor de f(x) não seja 3.
De forma geral, escrevemos:

se, quando x se aproxima de a (x a), f(x) se aproxima de b (f(x)b).

Como x² + x - 2 = (x - 1)(x + 2), temos:

Podemos notar que quando x se aproxima de 1 (x1), f(x) se aproxima de 3, embora para x=1 tenhamos f(x) = 2. o que ocorre é que procuramos o comportamento de y quando x1. E, no caso, y 3. Logo, o limite de f(x) é 3.
Escrevemos:

Se g: IR IR e g(x) = x + 2, g(x) = (x + 2) = 1 + 2 = 3, embora g(x)f(x) em x = 1. No entanto, ambas têm o mesmo limite.
Propriedades dos Limites
1ª)
O limite da soma é a soma dos limites.
O limite da diferença é a diferença dos limites.
Exemplo:

2ª)
O limite do produto é o produto dos limites.
Exemplo:

3ª)
O limite do quociente é o quociente dos limites desde que o denominador não seja zero.
Exemplo:

4ª)
Exemplo:

5ª)
Exemplo:

6ª)
Exemplo:

7ª)
Exemplo:

8ª)
Exemplo:
Limites Laterais
Se x se aproxima de a através de valores maiores que a ou pela sua direita, escrevemos:
Esse limite é chamado de limite lateral à direita de a.
Se x se aproxima de a através de valores menores que a ou pela sua esquerda, escrevemos:
Esse limite é chamado de limite lateral à esquerda de a.
O limite de f(x) para xa existe se, e somente se, os limites laterais à direita a esquerda são iguais, ou sejas:
  • Se
  • Se
Continuidade
Dizemos que uma função f(x) é contínua num ponto a do seu domínio se as seguintes condições são satisfeitas:
Propriedade das Funções contínuas
Se f(x) e g(x)são contínuas em x = a, então:
  • f(x)g(x) é contínua em a;
  • f(x) . g(x) é contínua em a;
  • é contínua em a .
  • Limites envolvendo infinito
    Conforme sabemos, a expressão x (x tende para infinito) significa que x assume valores superiores a qualquer número real e x (x tende para menos infinitos), da mesma forma, indica que x assume valores menores que qualquer número real.
    Exemplo:
    a) , ou seja, à medida que x aumenta, y tende para zero e o limite é zero.
    b) , ou seja, à medida que x diminui, y tende para zero e o limite é zero.
    c) , ou seja, quando x se aproxima de zero pela direita de zero ou por valores maiores que zero, y tende para o infinito e o limite é infinito.
    d) , ou seja, quando x tende para zero pela esquerda ou por valores menores que zero, y tende para menos infinito
    Limite de uma função polinomial para
    Seja a função polinomial . Então:
    Demonstração:
    Mas:
    Logo:
    De forma análoga, para , temos:
    Exemplos:
  • Limites trigonométricos
    Demonstração:
    Para , temos sen x < x <>x. Dividindo a dupla desigualdade por sen x > 0, vem:
    Invertendo, temos:
    Mas:
  • g(x) <>x) <>x) são funções contínuas e se , então, . Logo,
  • Limites exponenciais
    Neste caso, e representa a base dos logaritmos naturais ou neperianos. Trata-se do número irracional e cujo valor aproximado é 2,7182818.
    Veja a tabela com valores de x e de .
    x
    1 2 3 10 100 1 000 10 000 100 000
    2 2,25 2,3703 2,5937 2,7048 2,7169 2,7181 2,7182
    Notamos que à medida que .
    De forma análoga, efetuando a substituição , temos:

    Ainda de forma mais geral, temos :
    As duas formas acima dão a solução imediata a exercícios deste tipo e evitam substituições algébricas.
    Se ,então .
    Mas:
    Logo:
    Como x 0 , então u 0. Portanto:
    Generalizando a propriedade acima, temos .
  • www.somatematica.com.br

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de