Pular para o conteúdo principal

Conjuntos teoria

Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com
 

1. Introdução
Como em qualquer assunto a ser estudado, a Matemática também exige uma linguagem adequada para o seu desenvolvimento.
A teoria dos Conjuntos representa instrumento de grande utilidade nos diversos desenvolvimentos da Matemática, bem como em outros ramos das ciências físicas e humanas.
Devemos aceitar, inicialmente, a existência de alguns conceitos primitivos (noções que adotamos sem definição) e que estabelecem a linguagem do estudo da teoria dos Conjuntos.
Adotaremos a existência de três conceitos primitivos: elemento, conjunto e pertinência. Assim é preciso entender que, cada um de nós é um elemento do conjunto de moradores desta cidade, ou melhor, cada um de nós é um elemento que pertence ao conjunto de habitantes da cidade, mesmo que não tenhamos definido o que é conjunto, o que é elemento e o que é pertinência.

2. Notação e Representação
A notação dos conjuntos é feita mediante a utilização de uma letra maiúscula do nosso alfabeto e a representação de um conjunto pode ser feita de diversas maneiras, como veremos a seguir.
A. Listagem dos Elementos
Apresentamos um conjunto por meio da listagem de seus elementos quando relacionamos todos os elementos que pertencem ao conjunto considerado e envolvemos essa lista por um par de chaves. Os elementos de um conjunto, quando apresentados na forma de listagem, devem ser separados por vírgula ou por ponto-e-vírgula, caso tenhamos a presença de números decimais.
Exemplos
1º) Seja A o conjunto das cores da bandeira brasileira, então:

A = {verde, amarelo, azul, branco}
2º) Seja B o conjunto das vogais do nosso alfabeto, então:

B = {a, e, i, o, u}

3º) Seja C o conjunto dos algarismos do sistema decimal de numeração, então:

C = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

B. Uma Propriedade de seus elementos
A apresentação de um conjunto por meio da listagem de seus elementos traz o inconveniente de não ser uma notação prática para os casos em que o conjunto apresenta uma infinidade de elementos. Para estas situações, podemos fazer a apresentação do conjunto por meio de uma propriedade que sirva a todos os elementos do conjunto e somente a estes elementos.
A = {x / x possui uma determinada propriedade P}

Exemplos
1º) Seja B o conjunto das vogais do nosso alfabeto, então:
B = {x / x é vogal do nosso alfabeto}

2º) Seja C o conjunto dos algarismos do sistema decimal de numeração, então:
C = {x/x é algarismo do sistema decimal de numeração}

C. Diagrama de Euler-Ven
A apresentação de um conjunto por meio do diagrama de Euler-Venn é gráfica e, portanto, muito prática. Os elementos são representados por pontos interiores a uma linha fechada não entrelaçada. Dessa forma, os pontos exteriores à linha representam elementos que não pertencem ao conjunto considerado.
Exemplo
Conjuntos

3. Relação de Pertinência
Quando queremos indicar que um determinado elemento x faz parte de um conjunto A, dizemos que o elemento x pertence ao conjunto A e indicamos:
Conjuntos
em que o símbolo Pertence a é uma versão da letra grega epsílon e está consagrado em toda matemática como símbolo indicativo de pertinência. Para indicarmos que um elemento x não pertence ao conjunto A, indicamos:
Conjuntos
Exemplo
Consideremos o conjunto: A = {0, 2, 4, 6, 8}
O algarismo 2 pertence ao conjunto A:
Conjuntos
O algarismo 7 não pertence ao conjunto A:
Conjuntos

4. Relação de Inclusão Subconjuntos
Dizemos que o conjunto A está contido no conjunto B se todo elemento que pertencer a A, pertencer também a B. Indicamos que o conjunto A está contido em B por meio da seguinte símbologia:
Conjuntos
Obs. – Podemos encontrar em algumas publicações uma outra notação para a relação de inclusão:
Conjuntos
O conjunto A não está contido em B quando existe pelo menos um elemento de A que não pertence a B. Indicamos que o conjunto A não está contido em B desta maneira:
Conjuntos
Conjuntos Conjuntos

Se o conjunto A está contido no conjunto B, dizemos que A é um subconjunto de B. Como todo elemento do conjunto A pertence ao conjunto A, dizemos que A é subconjunto de A e, por extensão, todo conjunto é subconjunto dele mesmo.
Importante – A relação de pertinência relaciona um elemento a um conjunto e a relação de inclusão refere-se, sempre, a dois conjuntos.
Conjuntos
Podemos notar que existe uma diferença entre 2 e {2}. O primeiro é o elemento 2, e o segundo é o conjunto formado pelo elemento 2. Um par de sapatos e uma caixa com um par de sapatos são coisas diferentes e como tal devem ser tratadas.
Podemos notar, também, que, dentro de um conjunto, um outro conjunto pode ser tratado como um de seus elementos. Vejamos o exemplo a seguir:
{1, 2} é um conjunto, porém no conjunto
A = {1, 3, {1, 2}, 4} ele será considerado um elemento, ou seja, {1, 2} Pertence a A.
Uma cidade é um conjunto de pessoas que representam os moradores da cidade, porém uma cidade é um elemento do conjunto de cidades que formam um Estado.

5. Conjuntos Especiais
Embora conjunto nos ofereça a idéia de “reunião” de elementos, podemos considerar como conjunto agrupamentos formados por um só elemento ou agrupamentos sem elemento algum.
Chamamos de conjunto unitário aquele formado por um só elemento.
Exemplos
1º) Conjunto dos números primos, pares e positivos: {2}
2º) Conjunto dos satélites naturais da Terra: {Lua}
3º) Conjunto das raízes da equação x + 5 = 11: {6}

Chamamos de conjunto vazio aquele formado por nenhum elemento. Obtemos um conjunto vazio considerando um conjunto formado por elementos que admitem uma propriedade impossível.

Exemplos
1º) Conjunto das raízes reais da equação:
x2 + 1 = 0
2º) Conjunto: Conjuntos
O conjunto vazio pode ser apresentado de duas formas: vazio ou { }vazio ( é uma letra de origem norueguesa). Não podemos confundir as duas notações representando o conjunto vazio por {vazio}, pois estaríamos apresentando um conjunto unitário cujo elemento é o vazio .
O conjunto vazio está contido em qualquer conjunto e, por isso, é considerado subconjunto de qualquer conjunto, inclusive dele mesmo.
Demonstração
Vamos admitir que o conjunto vazio não esteja contido num dado conjunto A. Neste caso, existe um elemento x que pertence ao conjunto vazio e que não pertence ao conjunto A, o que é um absurdo, pois o conjunto vazio não tem elemento algum. Conclusão: o conjunto vazio está contido no conjunto A, qualquer que seja A.

6. Conjunto Universo
Quando desenvolvemos um determinado assunto dentro da matemática, precisamos admitir um conjunto ao qual pertencem os elementos que desejamos utilizar. Este conjunto é chamado de conjunto universo e é representado pela letra maiúscula U.
Uma determinada equação pode ter diversos conjuntos solução de acordo com o conjunto universo que for estabelecido.
Exemplos
1º) A equação 2x3 – 5x2 – 4x + 3 = 0 apresenta:
Conjuntos

7. Conjunto de Partes
Dado um conjunto A, dizemos que o seu conjunto de partes, representado por P (A), é o conjunto formado por todos os subconjuntos do conjunto A.
A. Determinação do Conjunto de partes
Vamos observar, com o exemplo a seguir, o procedimento que se deve adotar para a determinação do conjunto de partes de um dado conjunto A. Seja o conjunto A = {2, 3, 5}. Para obtermos o conjunto de partes do conjunto A, basta escrevermos todos os seus subconjuntos:
1º) Subconjunto vazio:vazio , pois o conjunto vazio é subconjunto de qualquer conjunto.
2º) Subconjuntos com um elemento: {2}, {3}, {5}.
3º) Subconjuntos com dois elementos: {2, 3}, {2, 5} e {3, 5}.
4º) Subconjuntos com três elementos:A = {2, 3, 5}, pois todo conjunto é subconjunto dele mesmo.
Assim, o conjunto das partes do conjunto A pode ser apresentado da seguinte forma: P(A) = {vazio, {2}, {3}, {5}, {2, 3}, {2, 5}, {3, 5}, {2, 3, 5}}

B. Número de Elmentos do conjunto de partes
Podemos determinar o número de elementos do conjunto de partes de um conjunto A dado, ou seja, o número de subconjuntos do referido conjunto, sem que haja necessidade de escrevermos todos os elementos do conjunto P (A). Para isso, basta partirmos da idéia de que cada elemento do conjunto A tem duas opções na formação dos subconjuntos: ou o elemento pertence ao subconjunto ou ele não pertence ao subconjunto e, pelo uso do princípio multiplicativo das regras de contagem, se cada elemento apresenta duas opções, teremos:
Conjuntos
Observemos o exemplo anterior: o conjunto A = {2, 3, 5} apresenta três elementos e, portanto, é de se supor, pelo uso da relação apresentada, que n [P (A)] = 23 = 8, o que de fato ocorreu.

8. Igualdade de Conjuntos
Dois conjuntos são iguais se, e somente se, eles possuírem os mesmos elementos, em qualquer ordem e independentemente do número de vezes que cada elemento se apresenta. Vejamos os exemplos:
{1, 3, 7} = {1, 1, 1, 3, 7, 7, 7, 7} = {7, 3, 1}
Observação
Se o conjunto A está contido em B (A contido B) e B está contido em A (B contido A), podemos afirmar que A = B.
www.vestibulandoweb.com.br

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de