Pular para o conteúdo principal

Trigonométria

1 - Multiplicação de arcos

Problema: Conhecendo-se as funções trigonométricas de um arco a , determinar as funções trigonométricas do arco n.a onde n é um número inteiro maior ou igual a 2.
Usaremos as fórmulas das funções trigonométricas da soma de arcos para deduzi-las.

1.1 - Seno e cosseno do dobro de um arco

Sabemos das aulas anteriores que sen(a + b) = sen a .cos b + sen b. cos a. Logo, fazendo a = b, obteremos a fórmula do seno do dobro do arco ou do arco duplo:
sen 2a = 2 . sen a . cos a
Analogamente, usando a fórmula do cosseno da soma, que sabemos ser igual a
cos(a + b) = cos a . cos b - sen a .sen b
e fazendo a = b, obteremos a fórmula do cosseno do dobro do arco ou do arco duplo:
cos 2a = cos2a - sen2a

Da mesma forma, partindo da tangente da soma, obteremos analogamente a fórmula da tangente do dobro do arco ou do arco duplo:

A fórmula acima somente é válida para tga ¹ 1 e tga ¹ -1, já que nestes casos o denominador seria nulo! Lembre-se do 11º mandamento! NÃO DIVIDIRÁS POR ZERO! Sabemos que a divisão por zero não é possível. Imagine dividir 2 chocolates por zero pessoas!!!

Exemplos:

sen4x = 2.sen2x.cos2x
senx = 2.sen(x/2).cos(x/2)
cosx = cos2(x/2) - sen2(x/2)
cos4x = cos22x - sen22x, ... , etc.

2 - Divisão de arcos
Vamos agora achar as funções trigonométricas da metade de um arco, partindo das anteriores.

2.1 - Cosseno do arco metade
Ora, sabemos que cos2a = cos2a - sen2a
Substituindo sen2a, por 1 - cos2a, já que sen2a + cos2a = 1, vem:
cos2a = 2.cos2a - 1. Daí, vem:
cos2a = (1+cos2a) / 2
Fazendo a = x/2, vem, cos2(x/2) = [1+cosx]/2.
Podemos escrever então a fórmula do cosseno do arco metade como:

Obs: o sinal algébrico vai depender do quadrante ao qual pertence o arco x/2.

2.2 - Seno do arco metade
Podemos escrever: cos2a = (1-sen2a) - sen2a = 1 - 2sen2a
Daí vem: sen2a = (1 - cos2a)/2
Fazendo a = x/2 , vem: sen2(x/2) = (1 - cosx) / 2.
Podemos escrever então, a fórmula do seno do arco metade como segue:

Obs: o sinal algébrico vai depender do quadrante ao qual pertence o arco x/2.

2.3 - Tangente do arco metade
Dividindo membro a membro as equações 2.1 e 2.2 anteriores, lembrando que
tg(x/2) = sen(x/2) / cos(x/2), vem:

Obs: o sinal algébrico vai depender do quadrante ao qual pertence o arco x/2.

Exercício resolvido
Simplifique a expressão y = cossec2a - cotg2a

Solução:
Sabemos que cossec2a = 1 / sen2a e cotg2a = cos2a / sen2a . Logo,
y = (1/sen2a) - (cos2a/sen2a)
Simplificando, vem: y = (1 - cos2a) / sen2a . Portanto,

Portanto, cossec2a - cotg2a = tga.
Lembre-se que 1 - cos2a = sen2a.
Somente a título de ilustração, vamos ler a expressão resultado: A cossecante do dobro de um arco subtraída da cotangente do dobro do mesmo arco é igual à tangente do arco. Aqui pra nós: a linguagem simbólica não é muito mais fácil?

3 - Transformação de somas em produto

Vamos deduzir outras fórmulas importantes da Trigonometria.
As fórmulas a seguir são muito importantes para a simplificação de expressões trigonométricas.

Já sabemos que:
sen(a + b) = sen a . cos b + sen b . cos a
sen (a - b) = sen a . cos b - sen b . cos a
Somando membro a membro estas igualdades, obteremos:
sen(a + b)+ sen(a - b) = 2.sen a . cos b.

Fazendo
a + b = p
a - b = q
teremos, somando membro a membro:
2a = p + q, de onde tiramos a = (p + q) / 2
Agora, subtraindo membro a membro, fica:
2b = p - q, de onde tiramos b = (p - q) / 2

Daí então, podemos escrever a seguinte fórmula:

Exemplo: sen50º + sen40º = 2.sen45º.cos5º

Analogamente, obteríamos as seguintes fórmulas:

Exemplos:

cos 30º + cos 10º = 2.cos20º.cos10º
cos 60º - cos 40º = -2.sen50º.sen10º
sen 70º - sen 30º = 2.sen20º.cos50º.

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de