Pular para o conteúdo principal

Lei dos Senos

Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com
     

Considere a figura abaixo, onde vemos um triângulo ABC inscrito numa circunferência de raio R. Observe que também podemos dizer que a circunferência está circunscrita ao triângulo ABC.

Na figura acima, temos:
AH = diâmetro da circunferência = 2R
(R = raio)
AO = OH = raio da circunferência = R
Medidas dos lados do triângulo ABC:
AB = c, BC = a e AC = b.
Para deduzir o
teorema dos senos, vamos iniciar observando que os ângulos H e B são congruentes ou seja possuem a mesma medida, pois ambos estão inscritos no mesmo arco CA. Além disso, podemos afirmar que o ângulo ACH é reto (90º), pois AH é um diâmetro. Portanto o triângulo ACH é um triângulo retângulo.
Podemos então escrever:
sen H = sen B = cateto oposto / hipotenusa = AC / AH = b/2R
Logo, fica: sen B = b / 2R e, portanto, b/senB = 2R.


Analogamente chegaríamos às igualdades
c/senC = 2R
a/senA = 2R
Como estas três expressões são todas iguais a 2R, poderemos escrever finalmente:


Esta expressão mostra que as medidas dos lados de um triângulo qualquer são proporcionais aos senos dos ângulos opostos a estes lados, sendo a constante de proporcionalidade igual a 2R, onde R é o raio da circunferência circunscrita ao triângulo ABC.
Este é o teorema dos senos – TS
.
O teorema dos senos visto acima, permite a dedução de uma importante fórmula para o cálculo da área de um triângulo qualquer. Seja o triângulo ABC da figura abaixo, de altura h.

Sabemos que a área de um triângulo é igual ao semiproduto da base pela altura:
S = 1/2 . base . altura . Logo,
S = 1/2 . a . h

Mas, no triângulo retângulo CAH, podemos escrever:
sen C = cateto oposto/hipotenusa = h/b
Þ h = b.senCSubstituindo na fórmula da área acima, vem:
S = 1/2.a.
b.senC
Mas, sabemos do teorema dos senos que
c/senC = 2R, onde R é o raio da circunferência circunscrita ao triângulo ABC. Logo: senC = c / 2R
Portanto, S = 1/2.a.b.c/2R = abc/4R.
Temos então a seguinte fórmula para o cálculo da área de um triângulo qualquer:


onde a, b e c são as medidas dos lados do triângulo e R é o raio da circunferência circunscrita ao triângulo e S a área do triângulo.
Já sabemos da Geometria Plana, que a área de um triângulo ABC, cujos lados medem respectivamente a, b e c, é dada pela fórmula:


onde p é o semiperímetro do triângulo ou seja: p = (a+b+c) / 2
Esta fórmula é conhecida comumente como Fórmula de Heron.
Heron de Alexandria – célebre geômetra grego. Viveu no século 1º da era cristã.
Assim, substituindo o valor de S da fórmula anterior, na fórmula S=abc/4R, encontraremos uma fórmula útil para o cálculo do raio da circunferência circunscrita a um triângulo qualquer
de lados a, b e c:

Temos: S = abc / 4R Þ R = abc / 4S
Portanto,



Onde p, conforme vimos acima é o semiperímetro dado por p = (a+b+c)/2.
Exemplo de aplicação: Vestibular da Univ. Federal do Ceará/1990
Seja R o raio do círculo circunscrito ao triângulo cujos lados medem 10m, 17m e 21m. Determine em metros, o valor de 8R.

Solução:
Temos: a = 10, b = 17 e c = 21
Þ p = (10+17+21) / 2 = 24
Portanto, substituindo diretamente na fórmula acima, fica:


Como o problema solicita o valor de 8R, vem: 8R = 8.170/16 = 170/2 = 85.
Portanto, 8R = 85, que é a resposta do problema.
Resposta: 85m

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de