Pular para o conteúdo principal

Movimento Uniforme


Pense em um automóvel que está em uma determinada estrada se movendo a uma velocidade constante tal que seu velocímetro indica 60 km/h. Tal situação não parece ser realidade, pois todo automóvel muda sua velocidade constantemente, seja para ultrapassar um veículo mais lento ou até mesmo para estacionar, reduzindo assim sua velocidade. Esse tipo de movimento não é bem a cara de nosso trânsito cotidiano em virtude da freqüente mudança de velocidade. Quando um corpo se move em velocidade constante dizemos que ele está em movimento uniforme.

Também chamado de movimento retilíneo uniforme, o movimento uniforme é o movimento no qual o móvel percorre distâncias iguais em intervalos de tempo iguais. Se a velocidade escalar é a mesma em todos instantes, ela coincide com a velocidade média, permitindo-nos escrever a seguinte equação matemática da velocidade:

V = Vm =ΔS/Δt (I)

Onde:
ΔS é a variação de posição do corpo: ΔS = S – S0 (II)
Δt é a variação do tempo: Δt = t – t0 (III)

Este movimento possui duas características que são: Aceleração nula (a=0) e velocidade constante, não-nula, diferente de zero (V≠0).

A função horária das posições é uma função do primeiro grau. Para determinarmos esta função podemos substituir as equações II e III na equação I que obteremos a seguinte função horária das posições para o movimento uniforme.

S = S0 + Vt

Onde:

S é a posição final do móvel;
S0 é a posição inicial;
t é o tempo;
V é a velocidade.

Se V>0 temos um movimento progressivo e se V<0 data-blogger-escaped-br="br" data-blogger-escaped-grado.="grado." data-blogger-escaped-movimento="movimento" data-blogger-escaped-retr="retr" data-blogger-escaped-temos="temos" data-blogger-escaped-um="um">Movimento progressivo é aquele no qual o móvel caminha no sentido positivo da trajetória, sua posição cresce e sua velocidade é positiva. O movimento retrógrado é aquele no qual o móvel caminha contrário ao sentido positivo da trajetória, sua posição decresce com o decorrer do tempo e sua velocidade é negativa.
www.mundoeducacao.com.br

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de