Pular para o conteúdo principal

Massa e peso Descubra a diferença entre esses conceitos

Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com



Massa
A massa é uma grandeza física fundamental. Segundo a mecânica newtoniana, ela dá a medida da inércia ou da resistência de um corpo em ter seu movimento acelerado. Ela também é a origem da força gravitacional, atuante sobre os corpos no Universo.

Mais recentemente, dentro da física moderna, a massa aparece relacionada com a energia, relação formulada por Einstein através da equação E = mc2.

A massa inercial de um corpo é definida pela Segunda Lei de Newton como uma constante de proporcionalidade entre a força (F) aplicada e a aceleração (a) causada:


Considerando que a força e a aceleração são grandezas vetoriais, isso implica em dizer que a massa é uma grandeza escalar. Então, a massa inercial indica a tendência de aceleração de um corpo para uma dada força.

Chamamos de massa gravitacional a intensidade da força de atração gravitacional gerada por um corpo dotado de massa. Nesse momento, é bom introduzirmos a relação que pode ser deduzida de leis da Mecânica, notando que a força peso que conhecemos depende da massa do corpo, mas não é equivalente a ela conceitualmente.

Peso
O peso é a força gravitacional sofrida por um corpo na vizinhança de um planeta ou de outro corpo celeste de massa significativa. Enquanto força, o peso é uma grandeza vetorial. Portanto, apresenta intensidade, direção e sentido.

Para corpos próximos da Terra, por exemplo, a direção é a linha que passa pelo objeto e pelo centro da Terra. O sentido é aquele que aponta para o centro da Terra.

Matematicamente, ele pode ser descrito como o produto entre massa e a aceleração da gravidade local:

Unidades
A força (o peso) é medida comumente em quilograma-força (kgf), em newton (N) ou em dina (dyn). Já a massa é medida em quilograma (kg), grama (g), tonelada (t), etc.

Se considerarmos que o valor de g na superfície da Terra é de aproximadamente 10 m/s2, teremos então que um corpo com a massa de 1 kg pesa 10 N ou 1 kgf; um corpo com a massa de 2 kg pesa 20 N ou 2 kgf; e assim por diante.

Nas balanças de farmácia, o peso é indicado por um ponteiro que é acionado por molas na plataforma. Quanto maior a massa da pessoa, maior a força peso que ela exerce sobre a plataforma, deformando mais as molas que a sustentam. Essa indicação de deformação é passada para o visor por meio de um ponteiro ou de uma indicação eletro-digital.


No cotidiano, os conceitos de massa e peso se confundem. É comum as pessoas dizerem, por exemplo, "peso 62 quilos", quando o certo seria dizer "peso 62 quilogramas força", ou "peso 620 newtons" (620 N).

Peso lunar
A Lua também tem aceleração gravitacional, mas como possui massa e tamanhos bem menores do que os da Terra, sua gravidade na superfície é de cerca de um sexto da encontrada em nosso planeta.

Com esse valor, o peso de um astronauta de massa 70 kg, por exemplo, seria de apenas 112 newtons quando ele estivesse na Lua (o valor de g na superfície lunar é de 1,6 m/s2). Na Terra, o mesmo astronauta tem quase 700 newtons de peso.


Esse fato torna os movimentos de um homem na Lua bem mais fáceis do que seriam aqui. Entretanto, a massa do astronauta permanece inalterada. Você pode calcular seu peso em outros planetas no Museu Interativo de Astronomia.
*Luís Fábio Simões Pucci é professor do Instituto Galileo Galilei para a Educação.

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de