Pular para o conteúdo principal

Experimento aleatório

Todo experimento aleatório - os fenômenos casuais onde as experiências são repetidas inúmeras vezes sob condições iguais, mas não apresentam os mesmos resultados - constitui o conjunto formado por todos os resultados possíveis. Esse conjunto é denominado de espaço amostral, e qualquer subconjunto dele é chamado de evento. Portanto, temos que o espaço amostral constitui todos os resultados possíveis e o evento, os casos favoráveis. Vamos abordar alguns exemplos que exploram de forma geral essas definições.

Exemplo 1

No lançamento simultâneo de dois dados, um branco e um preto, há um espaço amostral gerado. Vamos determinar todos os possíveis resultados deste lançamento.

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

O resultado possível no lançamento simultâneo de dois dados resulta em 36.

Com base nesse espaço amostral, podemos determinar qualquer evento pertencente ao conjunto dos possíveis resultados.

Evento A – faces iguais
A = {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)}

Evento B – soma maior que 10
B = {(5,6), (6,5), (6,6)}

Evento C – sair soma 6
C = {(1,5), (5,1), (2,4), (4,2), (3,3)}

Evento D – soma 7
D = {(1,6), (6,1), (2,5), (5,2), (3,4), (4,3)}

Evento E – soma menor que 5
E = {(1,1), (1,2), (2,1), (1,3), (3,1), (2,2)}


Exemplo 2

Uma urna contém uma bola verde e três brancas. Defina o espaço amostral do experimento “retirar uma bola ao acaso” e os eventos: retirar bola verde e retirar bola branca.

Possíveis resultados (espaço amostral): {verde, branca 1, branca 2, branca 3}, constituído de 4 elementos.

Evento retirar bola verde: {verde}, possui 1 elemento.

Evento retirar bola branca: {branca 1, branca 2, branca 3}, possui 3 elementos.


Exemplo 3

Numa caixa existem fichas numeradas de 1 a 10. Defina o espaço amostral do experimento “retirar fichas ao acaso” e defina os eventos: ocorrência de número ímpar, ocorrência de número primo e ocorrência de número maior que 4.

Possíveis resultados (espaço amostral): {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Evento ocorrência de número ímpar: {1, 3, 5, 7, 9}

Evento ocorrência de número primo: {2, 3, 5, 7}

Evento ocorrência de número maior que 4: {5, 6, 7, 8, 9, 10}
www.mundoeducacao.com.br/

Comentários

Postar um comentário

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de