Pular para o conteúdo principal

Polinômios Divisão

A compreensão de como funciona a divisão de polinômio por monômio irá depender de algumas definições e conhecimentos. Será preciso saber o que é um monômio, um polinômio e como resolver a divisão de monômio por monômio. Dessa forma, veja a seguir uma breve explicação sobre esses assuntos.

• Polinômio é uma expressão algébrica racional e inteira, por exemplo:

x2y
3x – 2y
x + y5 + ab

• Monômio é um tipo de polinômio que possui apenas um termo, ou seja, que possui apenas coeficiente e parte literal. Por exemplo:

a2 → 1 é o coeficiente e a2 parte literal.
3x2y → 3 é o coeficiente e x2y parte literal.
-5xy6 → -5 é o coeficiente e xy6 parte literal.

• Divisão de monômio por monômio

Ao resolvermos uma divisão onde o dividendo e o divisor são monômios devemos seguir a regra: dividimos coeficiente com coeficiente e parte literal com parte literal. Exemplos:

6x3 : 3x = 6 . x3 = 2x2
3 x2



Observação: ao dividirmos as partes literais temos que estar atentos à propriedade que diz que base igual na divisão, repete a base e subtrai os expoentes.

Depois de relembrar essas definições veja alguns exemplos de como resolver divisões de polinômio por monômio.

Exemplo: (10a3b3 + 8ab2) : (2ab2)

O dividendo 10a3b3 + 8ab2 é formado por dois monômios. Dessa forma, o divisor 2ab2, que é um monômio, irá dividir cada um deles, veja:

(10a3b3 + 8ab2) : (2ab2)




Assim, transformamos a divisão de polinômio por monômio em duas divisões de monômio por monômio. Portanto, para concluir essa divisão é preciso dividir coeficiente por coeficiente e parte literal por parte literal.





Ou




Portanto, (10a3b3 + 8ab2) : (2ab2) = 5a2b + 4

Exemplo: (9x2y3 – 6x3y2 – xy) : (3x2y)

O dividendo 9x2y3 – 6x3y2 – xy é formado por três monômios. Dessa forma, o divisor 3x2y, que é um monômio irá dividir cada um deles, veja:



Assim, transformamos a divisão de polinômio por monômio em três divisões de monômio por monômio. Portanto, para concluir essa divisão é preciso dividir coeficiente por coeficiente e parte literal por parte literal.




Portanto,

extraido de www.mundoeducacao.com.br

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de