Pular para o conteúdo principal

Conjunto




Plano Cartesiano

O plano cartesiano é definido por dois eixos orientados x e y – as dimensões -, perpendiculares entre si, que se cruzam no ponto O, origem de ambos os eixos, conforme figura a seguir.

Plano Cartesiano

Observações:

* O eixo x é denominado de eixo das abcissas ou eixo Ox;
* O eixo y é denominado de eixo das ordenadas ou eixo Oy;
* Os dois eixos dividem o plano em quatro quadrantes (I, II, III e IV na figura);
* Cada ponto P do plano cartesiano é identificado por dois números reais x e y e é representado na forma de um par ordenado (x,y), também chamado de coordenadas do ponto P, onde x é a abcissa e y a ordenada;
* Um ponto P é obtido por meio do encontro das perpendiculares aos eixos Ox e Oy traçadas a partir de sua abcissa e de sua ordenada. Veja na figura a representação do ponto P = (2,3);
* A origem O é representada pelo par ordenado (0,0);
* Os pontos do quadrante I são representados pelos pares ordenados (x,y) em que x e y são positivos;
* E os do quadrante II pelos pares ordenados (x,y) em que x < 0 e y > 0;
* Os do quadrante III pelos pares ordenados (x,y) em que x e y são negativos;
* Os pontos do quadrante IV são representados pelos pares ordenados (x,y) em que x > 0 e y < 0; * Um par ordenado (a,b) é igual a outro par ordenado (c,d) se, e somente se, a = c e b = d; * Em um par ordenado (a,b), se a é diferente de b, então (a,b) é diferente do par ordenado (b,a). Determine, por exemplo, no plano cartesiano os pontos P = (1,2) e Q = (2,1) para comprovar a afirmação; * De forma resumida, podemos afirmar que, no plano cartesiano, cada ponto é representado por um único par ordenado (a,b), a e b números reais. A recíproca também é verdadeira, ou seja, cada par ordenado (a,b) representa um único ponto no plano cartesiano; * E, por fim, o plano cartesiano é obtido associando-se a cada um dos eixos o conjunto dos números reais. Produto Cartesiano Sejam A e B dois conjuntos não vazios. Definimos como produto cartesiano de A por B o conjunto A x B cujos elementos são todos os pares ordenados (a,b) em que a pertence a A e b pertence a B: A x B = {(a,b) | a Ɛ A e b Ɛ B} Observações: * O símbolo A x B lê-se “A cartesiano B” ou “produto cartesiano de A por B”; * Se o conjunto A é diferente do conjunto B, A e B diferentes do conjunto vazio, então A x B é diferente de B x A, veja exemplo abaixo; * A x ø = ø, ø x A = ø e ø x ø = ø; * Se A ou B é infinito e nenhum deles for vazio, então A x B é infinito; * A x A pode ser também representado por A2, que se lê “A dois”; * Se A e B são finitos e A tem m elementos e B tem n elementos, então A x B tem m.n elementos: n(A x B) = n(A).n(B) = m.n. Exemplo extraído do livro Fundamentos de Matemática Elementar, Vol 01, Conjuntos e Funções – ver referências no final do post: Se A = {1,2,3} e B = {1,2} então: A x B = {(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)} e B x A = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)} cujas representações no plano cartesiano são as seguintes:
Exemplo de Produto Cartesiano - Gráficos
Relação Binária

Dados dois conjunto A e B não vazios, chama-se relação R, ou mais simplesmente relação binária, de A em B a qualquer subconjunto de A x B. Uma relação R de A em B é representada pelo símbolo R: A -> B:

R: A -> B <=> R C A x B

Exemplo:

Se A = {1,5} e B = {3,4,6}, então A x B = {(1,3), (1,4), (1,6), (5,3), (5,4), (5,6)}. Logo:

R = {(1,3), (1,6), (5,4)}

S = {(5.4)}

T = {(1,3), (1,4), (5,3), (5,6)}

são relações de A em B, uma vez que R, S e T são subconjuntos de A x B.

As relações que estabelecem uma condição matemática para que um determinado par ordenado (x,y) pertença à uma relação são de grande importância. Vejamos alguns exemplos para ilustrar o fato.

Se A = {1,3,4} e B = {2,4}, então A x B = {(1,2), (1,4), (3,2), (3,4), (4,2), (4,4)}. São relações de A em B:

a) R = {(x,y) Ɛ A x B | x = y} = {(4,4)}

b) S = {(x,y) Ɛ A x B | x/y Ɛ Z} = {(4,2), (4,4)}

c) T = {(x,y) Ɛ A x B | y – x = 1} = {(1,2), (3,4)}
Domínio e Imagem

Seja R uma relação de A em B.

1. Chama-se domínio de R, e denotamos por D(R), o conjunto de todos os primeiros elementos dos pares ordenados pertencentes a R. Ou, alternativamente, o conjunto de todos os elementos de A que estão associados a pelo menos um elemento de B.

2. Chama-se imagem de R, e denotamos por Im(R), o conjunto de todos os segundos elementos dos pares ordenados pertencentes a R.

Com base no exemplo anterior, temos:

a) D(R) = {4} e Im(R) = {4}

b) D(S) = {4} e Im(S) = {2,4}

c) D(T) = {1,3} e Im(T) = {2,4}
Referências

1. Fundamentos de Matemática Elementar, Gelson Iezzi, Osvaldo Dolce & Carlos Murakami, São Paulo, Atual Editora Ltda, edição 1977;
2. Matemática para o Ensino Médio: Volume Único, Manoel Jairo Bezerra, São Paulo, Editora Scipione, 2001.

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de