Pular para o conteúdo principal

Divisores de um número

Critérios de divisibilidade

Conhecer os critérios de divisibilidade facilita a resolução de cálculos envolvendo divisões. Vejamos alguns critérios de divisibilidade:

Divisibilidade por 2:

Um número é divisível por 2, quando o algarismo das unidades for 0, 2 , 4, 6 ou 8. Um número que é divisível por 2 é denominado par, caso contrário, ímpar.

Divisibilidade por 3:

Um número é divisível por 3, quando a soma dos valores absolutos de seus algarismos for divisível por 3.

Divisibilidade por 4:

Um número é divisível por 4, quando o número formado pelos dois últimos algarismos da direita for 00 ou divisível por 4.

Divisibilidade por 5:

Um número é divisível por 5, quando o algarismo das unidades for 0 ou 5.

Divisibilidade por 6:

Um número é divisível por 6, quando for divisível por 2 e por 3 simultaneamente.

Divisibilidade por 10:

Um número é divisível por 10, quando o algarismo das unidades for 0 ( zero )

OBS: NÚMERO DE DIVISORES:

O conjunto dos divisores de um número natural x é o conjunto D(x) formado por todos os números naturais que são divisores de x.

Exemplo: o conjunto dos divisores de 36.

D(36) = { 1, 2, 3, 4, 6, 9, 12, 18, 36}

Roteiro para obter todos os divisores naturais de um número:

( vamos utilizar o 36 como exemplo).

1º) fatoramos o número



2º) colocamos um traço vertical ao lado dos fatores primos



3º) na linha de cada fator primo vamos colocando os produtos dele pelos números já colocados nas linhas de cima.

D(36) = { 1, 2 , 3, 4, 6, 9, 12, 18, 36 }


Roteiro para obtermos o número de divisores naturais de um número: nD(x)

( vamos utilizar o 36 como exemplo).

1º) fatorar o número



2º) a cada expoente acrescentamos uma unidade e a seguir efetuamos o produto, resultando assim o número de divisores naturais do número

então 36 possui 9 divisores naturais

OBS: De um modo geral, o número de divisores naturais do número natural

x = an . bm . cp . ...

nD(x) = ( n + 1 ) . ( m + 1 ) . ( p + 1 ) . ...

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de