Pular para o conteúdo principal

Curiosidades da Matemática

Curiosidades

O epitáfio de Diofanto

Diofanto foi um matemático que viveu em Alexandria no século 3º. Foi o primeiro matemático grego a usar simbolismo algébrico e sua obra nos chegou através de fragmentos do seu livro "Aritmética". Em sua homenagem, chamamos de equações diofantinas as equações cujas soluções devem ser números inteiros.
Pouco sabemos sobre sua vida, mas existe uma charada que, dizem, teria sido gravada no seu túmulo: "Aqui jaz o matemático que passou um sexto da sua vida como menino. Um dozeavo da sua vida passou como rapaz. Depois viveu um sétimo da sua vida antes de se casar. Cinco anos após nasceu seu filho, com quem conviveu metade da sua vida. Depois da morte de seu filho, sofreu mais 4 anos antes de morrer." Quantos anos viveu Diofanto?

O último teorema de Fermat

Pierre de Fermat foi um grande matemático francês do século 17. Um dia, Fermat estava lendo um livro, "Aritmética" de Diofanto, onde o autor discutia as soluções inteiras para uma equação do tipo x² + y² = z². De acordo com o Teorema de Pitágoras, esses números constituem os lados de um triângulo retângulo. Existem infinitos números inteiros que satisfazem essa equação, como 3, 4 e 5 ou 5, 12 e 13.
Fermat começou a pensar se o mesmo seria verdadeiro para cubos ou biquadrados (quarta potência), isto é, se existiriam também soluções inteiras para equações do tipo x^3 + y^3 = z^3 ou, x^4 + y^4 = z^4 de modo geral, x^n + y^n = z^n. Ele escreveu na margem do seu livro: "É impossível separar um cubo em dois, ou um biquadrado em dois, ou, de um modo geral qualquer potência, exceto o quadrado, em duas potências com o mesmo expoente. Descobri uma demonstração demasiadamente maravilhosa, mas é demasiadamente comprida para caber nesta margem."Fermat morreu sem apresentar a demonstração Com isso, criou-se um problema que desafiaria os maiores matemáticos do mundo durante mais de três séculos e meio. Euler, o maior matemático do século 18, teve que reconhecer sua derrota. Recentemente, grandes matemáticos como Elkies e Faltings, quase o demonstraram. Muitos matematicos modernos começaram a duvidar que Fermat tivesse realmente demonstrado esse teorema. Até que, em 1995, um matemático americano, Andrew Wiles demonstrou definivamente o último teorema de Fermat, consagrando-se mundialmente.

Você é capaz de somar os algarismos de 1 a 100 em poucos minutos?

Carl Friedrich Gauss (1777-1855) aos 10 anos de idade respondeu rapidamente 5.050 ao seu professor surpreendendo-o pela sua grande habilidade na matemática. Em 1792, seu talento foi reconhecido pelo duque de Braunschweig, que lhe garantiu recursos para prosseguir o estudo de matemática. Gauss criou a geometria diferencial, e fez novas descobertas como a Lei da Reciprocidade Quadrática, que introduz o conceito de congruência e o Teorema Fundamental da Álgebra. Em 1801, publicou Disquisitiones Arithmeticae, seu tratado sobre a Teoria dos Números. No mesmo ano, calculou a órbita do asteróide Ceres. Com base em uma teoria que desenvolveu, previu corretamente onde e quando o Ceres deveria reaparecer. Morreu em 23 de fevereiro de 1855, sendo considerado o "Príncipe da Matemática".

Vejam abaixo a resolução proposta por Gauss
(isso aos 10 anos de idade):




Revolução Matemática - O cálculo diferencial e integral

O cálculo diferencial e integral, que Newton desenvolve ao mesmo tempo que o alemão Wilheim Leibniz (1646-1716), revoluciona a matemática. Para se saber a área de um círculo, utilizando a nova ferramenta, basta dividir esse círculo em quadrados iguais, bem pequenos. Em seguida, calcula-se a área de um quadrado e multiplica-se pelo número total de quadrados. Com isso, acha-se a área (ou o volume se for o caso, de qualquer figura). Os quadrados têm de ser infinitamente pequenos para encher toda a borda do círculo, e o número de quadrados precisa ser infinito. Portanto, a área total será uma soma de infinitos termos, tipo de soma que os gregos já sabiam fazer há mais de 2 mil anos.

Você sabia?
Que o maior número primo conhecido é , que tem 2.098.960 dígitos e foi descoberto em 01/06/1999 por Nayan Hafratwala, um participante do GIMPS, um projeto cooperativo para procurar primos de mersenne.

Que são conhecidos 51539600000 casas decimais de (Pi), calculadas por Y. Kamada e D. Takahashi, da Universidade de Tokio em 1997? E que em 21/08/1998 foi calculada pelo projeto Pihex a 5000000000000a. casa binária de (Pi).

Faça história na matemática!!!

Você poderia descobrir o mais desejado feito de toda a matemática: um novo número primo de Mersenne. A Electronic Frontier Foundation está oferecendo $100,000,00 para a primeira pessoa ou grupo que descobrir o décimo milionésimo dígito de um número primo! Você pode encontrar maiores informações em www.mersenne.org
http://ensinodematemtica.blogspot.com
Antonio Carlos Carneiro Barroso
Extraido do site www.exatas.mat.br

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de